Trigonometry Definition, Formulas, Ratios, & Identities

Trigonometry Definition

Trigonometry is a branch of mathematics that deals with the relationships between the angles and sides of triangles. The word “trigonometry” is derived from the Greek words “trigonon,” meaning triangle, and “metron,” meaning measure. This mathematical discipline has applications in various fields, including physics, engineering, computer science, and more.

Trigonometric Ratios

Trigonometry primarily involves six trigonometric ratios that relate the angles and sides of a right-angled triangle. These ratios are sine (sin), cosine (cos), tangent (tan), cosecant (csc), secant (sec), and cotangent (cot).

Sine (sinθ)

Definition: In a right-angled triangle, the sine of an angle is the ratio of the length of the side opposite the angle to the length of the hypotenuse.

Formula- sin(θ)=OppositeHypotenuse\sin(\theta) = \frac{\text{Opposite}}{\text{Hypotenuse}}

Cosine (cosθ)

Definition: The cosine of an angle in a right-angled triangle is the ratio of the length of the adjacent side to the length of the hypotenuse.

Formula- cos(θ)=AdjacentHypotenuse\cos(\theta) = \frac{\text{Adjacent}}{\text{Hypotenuse}}

Tangent (tanθ)

Definition: Tangent is the ratio of the length of the side opposite the angle to the length of the adjacent side in a right-angled triangle.

Formulas- tan(θ)=OppositeAdjacent\tan(\theta) = \frac{\text{Opposite}}{\text{Adjacent}}

Cosecant (cscθ)

Definition: Cosecant is the reciprocal of sine. It is the ratio of the length of the hypotenuse to the length of the side opposite the angle.

Formulas- csc(θ)=1sin(θ)\csc(\theta) = \frac{1}{\sin(\theta)}

Secant (secθ)

Definition: Secant is the reciprocal of cosine. It is the ratio of the length of the hypotenuse to the length of the adjacent side.

Formulas- sec(θ)=1cos(θ)\sec(\theta) = \frac{1}{\cos(\theta)}

Cotangent (cotθ)

Definition: Cotangent is the reciprocal of tangent. It is the ratio of the length of the adjacent side to the length of the side opposite the angle.

Formulas- cot(θ)=1tan(θ)\cot(\theta) = \frac{1}{\tan(\theta)}

Trigonometric Identities

Trigonometric identities are mathematical equations involving trigonometric functions. They are useful for simplifying expressions and solving trigonometric equations.

Some fundamental trigonometric identities include.

Pythagorean Identities

sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1

1+tan2(θ)=sec2(θ)1 + \tan^2(\theta) = \sec^2(\theta)

1+cot2(θ)=csc2(θ)1 + \cot^2(\theta) = \csc^2(\theta)

Reciprocal Identities

csc(θ)=1sin(θ)\csc(\theta) = \frac{1}{\sin(\theta)}

sec(θ)=1cos(θ)\sec(\theta) = \frac{1}{\cos(\theta)}

cot(θ)=1tan(θ)\cot(\theta) = \frac{1}{\tan(\theta)}

Quotient Identities

tan(θ)=sin(θ)cos(θ)\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}

cot(θ)=cos(θ)sin(θ)\cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)}

Co-function Identities

sin(π2θ)=cos(θ)\sin\left(\frac{\pi}{2} – \theta\right) = \cos(\theta)

cos(π2θ)=sin(θ)\cos\left(\frac{\pi}{2} – \theta\right) = \sin(\theta)

tan(π2θ)=cot(θ)\tan\left(\frac{\pi}{2} – \theta\right) = \cot(\theta)

Trigonometric Formulas

Beyond basic ratios and identities, trigonometry involves various formulas for solving problems and analyzing different scenarios.

Some key formulas include

Angle Sum and Difference Formulas

sin(A±B)=sinAcosB±cosAsinB\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B

cos(A±B)=cosAcosBsinAsinB\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B

tan(A±B)=tanA±tanB1tanAtanB\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}

Double Angle Formulas

sin(2θ)=2sinθcosθ\sin(2\theta) = 2\sin\theta\cos\theta

cos(2θ)=cos2θsin2θ\cos(2\theta) = \cos^2\theta – \sin^2\theta

tan(2θ)=2tanθ1tan2θ\tan(2\theta) = \frac{2\tan\theta}{1 – \tan^2\theta}

Half Angle Formulas

sin(θ2)=±1cosθ2\sin\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 – \cos\theta}{2}}

cos(θ2)=±1+cosθ2\cos\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 + \cos\theta}{2}}

tan(θ2)=±1cosθ1+cosθ\tan\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 – \cos\theta}{1 + \cos\theta}}

Law of Sines

For any triangle with sides a, b, and c, and angles A, B, and C

asinA=bsinB=csinC\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}

Law of Cosines

For any triangle with sides a, b, and c, and angle C

c2=a2+b22abcosCc^2 = a^2 + b^2 – 2ab\cos C

Area of a Triangle

For a triangle with sides a, b, and included angle C

Area=12absinC\text{Area} = \frac{1}{2}ab\sin C

Read Also

What is a Circle? Definition, Formulas, Examples

Product to Sum and Sum to Product Formulas

Product to Sum

sinAsinB=12[cos(AB)cos(A+B)]\sin A \sin B = \frac{1}{2}[\cos(A – B) – \cos(A + B)]

cosAcosB=12[cos(AB)+cos(A+B)]\cos A \cos B = \frac{1}{2}[\cos(A – B) + \cos(A + B)]

sinAcosB=12[sin(A+B)+sin(AB)]\sin A \cos B = \frac{1}{2}[\sin(A + B) + \sin(A – B)]

Sum to Product

sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2\sin\left(\frac{A + B}{2}\right)\cos\left(\frac{A – B}{2}\right)

sinAsinB=2cos(A+B2)sin(AB2)\sin A – \sin B = 2\cos\left(\frac{A + B}{2}\right)\sin\left(\frac{A – B}{2}\right)

cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos\left(\frac{A + B}{2}\right)\cos\left(\frac{A – B}{2}\right)

cosAcosB=2sin(A+B2)sin(AB2)\cos A – \cos B = -2\sin\left(\frac{A + B}{2}\right)\sin\left(\frac{A – B}{2}\right)

Cofunction Identities

sin(πθ)=sinθ\sin(\pi – \theta) = \sin \theta

cos(πθ)=cosθ\cos(\pi – \theta) = -\cos \theta

tan(πθ)=tanθ\tan(\pi – \theta) = -\tan \theta

Power-Reducing Formulas

sin2θ=1cos(2θ)2\sin^2 \theta = \frac{1 – \cos(2\theta)}{2}

cos2θ=1+cos(2θ)2\cos^2 \theta = \frac{1 + \cos(2\theta)}{2}

Triple Angle Formulas

sin(3θ)=3sinθ4sin3θ\sin(3\theta) = 3\sin\theta – 4\sin^3\theta

cos(3θ)=4cos3θ3cosθ\cos(3\theta) = 4\cos^3\theta – 3\cos\theta

tan(3θ)=3tanθtan3θ13tan2θ\tan(3\theta) = \frac{3\tan\theta – \tan^3\theta}{1 – 3\tan^2\theta}

Sine and Cosine Addition Formulas

sin(A+B)=sinAcosB+cosAsinB\sin(A + B) = \sin A \cos B + \cos A \sin B

cos(A+B)=cosAcosBsinAsinB\cos(A + B) = \cos A \cos B – \sin A \sin B

Inverse Trigonometric Function Formulas

sin1(x)+cos1(x)=π2\sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2}

tan1(x)+cot1(x)=π2\tan^{-1}(x) + \cot^{-1}(x) = \frac{\pi}{2}

Half Angle Tangent Formula

tan(θ2)=sinθ1+cosθ\tan\left(\frac{\theta}{2}\right) = \frac{\sin\theta}{1 + \cos\theta}

Area of a Sector of a Circle

For a circle with radius r and central angle θ

Area=θ360πr2\text{Area} = \frac{\theta}{360^\circ} \pi r^2

Law of Tangents

For a triangle with sides a,b,c and angles A, B, C

aba+b=tan(AB2)tan(A+B2)\frac{a-b}{a+b} = \frac{\tan\left(\frac{A-B}{2}\right)}{\tan\left(\frac{A+B}{2}\right)}

Euler’s Formula

eiθ=cosθ+isinθe^{i\theta} = \cos \theta + i \sin \theta

This formula connects exponential functions, trigonometric functions, and imaginary numbers.

Sum of Cubes Formulas

sin3θ=34sinθ14sin(3θ)\sin^3 \theta = \frac{3}{4}\sin \theta – \frac{1}{4}\sin(3\theta)

cos3θ=34cosθ+14cos(3θ)\cos^3 \theta = \frac{3}{4}\cos \theta + \frac{1}{4}\cos(3\theta)

Hyperbolic Trigonometric Functions

sinhx=exex2\sinh x = \frac{e^x – e^{-x}}{2}

coshx=ex+ex2\cosh x = \frac{e^x + e^{-x}}{2}

tanhx=sinhxcoshx\tanh x = \frac{\sinh x}{\cosh x}

Inverse Hyperbolic Functions

sinh1x=ln(x+x2+1)\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1})

cosh1x=ln(x+x21)\cosh^{-1} x = \ln(x + \sqrt{x^2 – 1})

tanh1x=12ln(1+x1x)\tanh^{-1} x = \frac{1}{2} \ln\left(\frac{1+x}{1-x}\right)

Sine and Cosine Integrals

Si(x)=0xsinttdt\text{Si}(x) = \int_0^x \frac{\sin t}{t} \,dt

Ci(x)=xcosttdt\text{Ci}(x) = -\int_x^\infty \frac{\cos t}{t} \,dt

Product of Sines and Cosines

sinAsinB=12[cos(AB)cos(A+B)]\sin A \sin B = \frac{1}{2}[\cos(A – B) – \cos(A + B)]

cosAcosB=12[cos(AB)+cos(A+B)]\cos A \cos B = \frac{1}{2}[\cos(A – B) + \cos(A + B)]

Trigonometric Substitution (Calculus)

Used in integration, such as a2x2dx\int \sqrt{a^2 – x^2} \,dx or x2a2dx\int \sqrt{x^2 – a^2} \,dx.

Periodicity Formulas

sin(θ+2πn)=sinθ\sin(\theta + 2\pi n) = \sin \theta

cos(θ+2πn)=cosθ\cos(\theta + 2\pi n) = \cos \theta

tan(θ+πn)=tanθ\tan(\theta + \pi n) = \tan \theta, where nn is an integer.

General Angle Formulas

sin(A+n360)=sinA\sin(A + n360^\circ) = \sin A

cos(A+n360)=cosA\cos(A + n360^\circ) = \cos A

tan(A+n180)=tanA\tan(A + n180^\circ) = \tan A, where nn is an integer.

Law of Sines for Non-Right Triangles

For any triangle with sides a, b, c and angles A, B, C

asinA=bsinB=csinC\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}

Law of Cosines for Non-Right Triangles

For any triangle with sides a, b, c and angles A, B, C

c2=a2+b22abcosCc^2 = a^2 + b^2 – 2ab\cos C

These formulas and identities form the basis for solving a wide range of trigonometric problems in geometry, physics, engineering, and other disciplines. Understanding and applying these concepts is important for anyone dealing with angles, triangles, and periodic phenomena.

Conclusion

Trigonometry is a rich and versatile branch of mathematics that plays a fundamental role in various scientific and technological fields. The relationships and properties described by trigonometric ratios, identities, and formulas provide a powerful toolkit for solving problems related to angles and triangles, making it an essential subject for students and professionals.

3 thoughts on “Trigonometry Definition, Formulas, Ratios, & Identities”

Leave a Comment

error: Content is protected !!